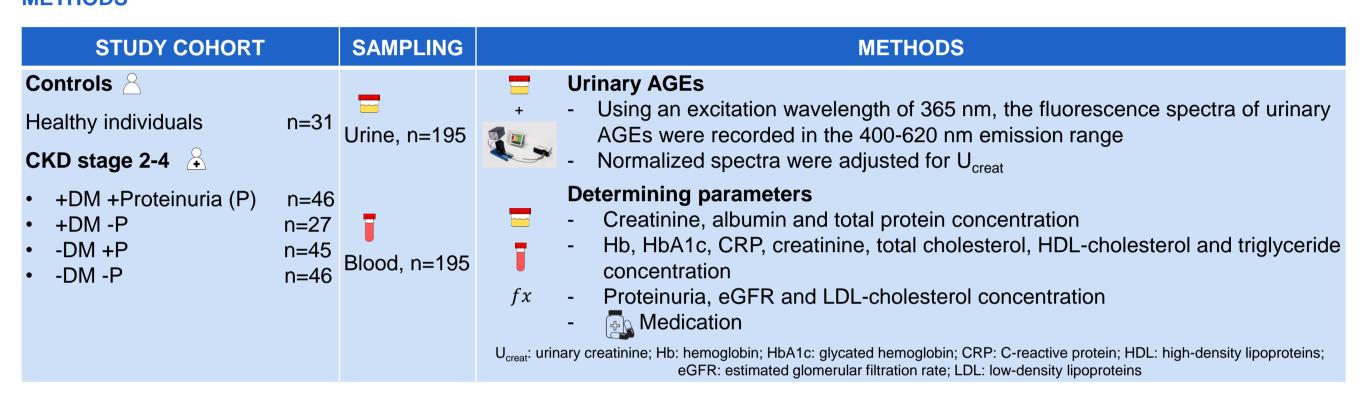
UV FLUORESCENCE-BASED DETERMINATION OF URINARY ADVANCED GLYCATION END PRODUCTS IN PATIENTS WITH CHRONIC KIDNEY DISEASE

Mieke Steenbeke¹, Sander De Bruyne², Elisabeth Van Aken³, Griet Glorieux¹, Wim Van Biesen¹, Jonas Himpe², Gilles De Meester², Marijn Speeckaert^{1,4} and Joris Delanghe⁵

¹Department of Internal Medicine and Pediatrics, Nephrology Unit, Ghent University Hospital, Ghent, Belgium; ²Department of Laboratory Medicine, Clinical Chemistry, Ghent University Hospital, Ghent, Belgium; ³Department of Ophthalmology, Sint-Elisabeth Ziekenhuis, Zottegem, Belgium; ⁴Research Foundation Flanders, Brussels, Belgium; ⁵Department of Diagnostic Sciences, Ghent University, Ghent, Belgium


INTRODUCTION AND OBJECTIVE

Advanced glycation end products (AGEs) are a class of proteins or lipids that are non-enzymatically glycated and oxidized after contact with aldose sugars. The **accumulation** of AGEs results in **carbonyl stress**, which is characteristic for diabetes mellitus (DM), uremia, atherosclerosis and vascular dysfunction. In the present study, we evaluated the use of UV fluorescence as an **alternative tool** to detect urinary AGEs.

The aim of the study was to explore the possibilities of UV fluorescence spectrometry:

- 1. to detect urinary AGEs in well-characterized patient groups with chronic kidney disease (CKD) in comparison with healthy individuals
- 2. to investigate the **determining parameters** of the AGE-specific fluorescence signal

METHODS

RESULTS

440 nm

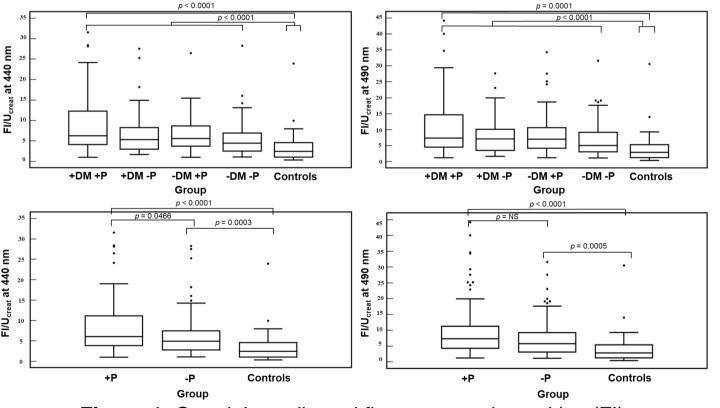


Table 1. Multiple regression model

Dependent Variable	Independent Variable	β (SE)	<i>p</i> -Value
Ln(Fluorescence intensity at emission wavelength 440 nm) $R^2 = 0.1970, p < 0.001$	Age (years)	0.0107 (0.0046)	0.0206
	Ln(eGFR) (mL/min/1.73 m ²)	-0.2565 (0.1429)	0.0743
	Ln(CRP) (mg/L)	0.1346 (0.0593)	0.0245
	Insulin treatment	0.2798 (0.0844)	0.0011
Ln(Fluorescence intensity at	Age (years)	0.0155 (0.0040)	0.0001
emission wavelength 490 nm)	Ln(CRP) (mg/L)	0.1166 (0.0632)	0.0667
$R^2 = 0.1467, p < 0.001$	Insulin treatment	0.2664 (0.0880)	0.0028

R²: coefficient of determination; β: standardized regression coefficient; SE: standard error

Figure 1. Creatinine adjusted fluorescence intensities (FI)

- AGE fluorescence intensity in **CKD patients > healthy controls** (440 nm: p < 0.0001; 490 nm: p = 0.0001)
- Fluorescence emission spectra in CKD +P > CKD -P > healthy controls (440 and 490 nm: p < 0.0001)
- Predictors
 - 440 nm: age, CRP and insulin treatment
 - 490 nm: age and insulin

CONCLUSION

The presented method is a **fast**, **simple**, **cheap**, **non-invasive method** to monitor the urinary AGE-load in the CKD population and this over a wide range of kidney function.

MORE INFO

Steenbeke M, De Bruyne S, Van Aken E, Glorieux G, Van Biesen W, Himpe J, et al. UV fluorescence-based determination of urinary advanced glycation end products in patients with chronic kidney disease. DIAGNOSTICS. 2020;10

CONTACT

MIEKE STEENBEKE | Mieke.Steenbeke@uzgent.be